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‘Traditional Compliance
‘Expected Outcomes
‘Technology Assistance
‘Examples




*Small / Reducing Compliance Staff

- - Fewer staff (authorized and/or actually
Traditional hired)

Compliance -Turn over
*Small percent of coverage

*Dwindling travel/expense budget
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*Customer Service [ Aggravation

- - Takes taxpayer’s staff time
Traditional - Stress on taxpayer

Compliance -Repeat Audits — “Why are you picking
on me?”




Efficiencies?

Traditional - No tax due audits
I * No return of cost
Com pliance - Bad for agency reputation

*Opportunity Cost
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- Audit Selection
*Random choice, chance of no change
* Biased choices

- * Repeat audits
Traditional - Excessive selection time invested

Compliance
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*More complete picture of the
taxpayer’s compliance situation

Expected * More effective use of resources

Outcomes *Improved reputation

*Broader/more appropriate
compliance coverage
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*Move away from single issue (even
tax type) approach

*Deploy agile analytics solutions that

Technology are ea_sily ad_justed as non-
compliance issues evolve

*Data Modeling
* Prediction Algorithms
*Machine Learning

Assistance
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Technology

Assistance

*Remove data silos

*Integrate non-traditional data
sources

»Utilize statistical applications to
identify peer comparisons
* Geospatial analysis s

*Compound business rules &is
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Leveraging
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Already in wide use in the commercial & financial
industries

* Fairly new to government (especially State/Local)

DeVice ID * Device Identification

a n d * tracking cookies or tokens, or collecting IP addresses

* only provides limited information about the customer’s device, such as

geolocation, the IP address they choose to report, and details of the
browser in use

Reputation

* Device Reputation

* identifies if the device has been “seen” before, does it have associations,

has anyone in the network had a bad experience, and do any anomalies
exist
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*Hardware Store — Data

*Reported Annual Sales

* Gross Receipts from Corporate Return
*Number of Employees

*Average Inventory

*Total Square Footage

*Peer Group Average per sales
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Shared

Demographics

Finding shared demographics amongst taxpayers,
owners and practitioners can lead to populations
with fraudulent intentions




Relationship
Examples
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Follow The Money

Public Record
Connections

2 o

// ‘ l\\\ -
AN 4_‘/;;// AN
—.A«Q ZA) //ll,_,_\\\\\\‘. .‘,s

i’ /'I/ ""I

O\ RS g!\\\ Vi,
i g ““v‘r\“wA % -

e ‘ﬁ..;;:e,,‘\;gw,gm “/i
- “\\“A’RA‘\ IS V’ v
, ! g,_.gll! N
A‘o ‘\»' WX




Questions?




